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HDMOCHIRAL KETALS IN ORGANIC SYNTHESIS. ENANTIOSELECTIVE PREPARATION OF 
(+)-MODHEPHENE 
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Abstract. An efficient, enantioselective synthesis of the title compound 1 via diastereose- 
lective cyclopropanation is described. 

Modhephene 1 is an unusual sesquiterpene possessing a carbocyclic [3.3.3] propellane 

skeleton.1 Several syntheses of racemic modhephene have been reported2 but no enantioselective 

approach has yet been disclosed. The synthesis due to Paquette and Schostarez proceeds to 

2 3 

racemic modhephene via racemic bicyclic ketone 2, which can be prepared from enone 3 in two 

steps (42% yield).2bs2c Our recently developed methodology for diastereoselective cycloprop- 

anation of bicyclic enone 1,4-di-c-alkylthreitol ketals3 presented an opportunity for an 

enantioselective approach to 2 from 3. We have reduced this approach to practice as outlined 

in Scheme I and described below. 

Ketalization of 32b.c using 1,4-di-~-methyl-2,3-di-~-trimethylsilyl-D-threitol under the 

conditions of Noyori4 gave ketal 4 in 70% yield. Simmons-Smith cyclopropanation3,5 of 4 

provided, in 84% chemical yield, an inseparable 8:l mixture of cyclopropyl ketals 5a and 5b 

as determined by 62.9 MHz I3C NMR spectroscopy.6 

Ketal hydrolysis (HCl, H20, CH30H, room temperature) gave enantiomerically enriched 

ketone 6, mp 48-50 OC, [,]D25 -31.5' (c 3.9, CHC13), in 94% yield. Assignment of the (3as. 

6as) absolute stereochemistry to 6 was based upon application of the "reversed octant rule" 

in interpreting the CD spectrum of 6.7 This assignment was in accord with all previously 

examined cyclopropyl ketones.397 
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Treatment of 6 with iodotrimethylsilane (2.1 equiv, CC14, -IO 'C, 3h) produced, via regio- 

selective cyclopropane ring opening, 8 iodomethyl ketone 7, mp 38-40 "C, [a]025 -33.1" (c 3.2, 

CHC13), in 85% yield. Ketalization of 7 using bis-trimethylsilyl ethylene glyco14 gave - 
iodomethyl ketal 8, [a]D25 t21.7" (c 5.5, CHC13) in 96% yield. Displacement of iodide by the - 

lithium salt of 1-trimethylsilyl-1-propyneg (2 equiv, Et20/TMED/HMPA, -25 'C, 1 h) gave crude 

acetylenic ketal 9 which was hydrolyzed (HCl, CH30H, H20, room temperature) and desilylated 

(nBu4Nt F-, THF, H20, room temperature) to give enantiomerically enriched ketone 2, [a]025 

-117.9’ (5 3.5, CHC13), in 82% yield from 8. This material exhibited spectroscopic character- 

istics consistent with those published 2bs2c for racemic 2. Note that although the sequence 

outlined for preparation of enantiomerically enriched 2 is longer than the synthesis of race- 

mic 2, it is comparably efficient (37% overall yield from 3 over eight steps). 

Completion of the first enantioselective synthesis of modhephene 1 from optically enriched 

ketone 2 paralleled the route previously outlined by Paquette and Schostarez.2b,c Thermoly- 

sisI0 of 2 (decalin, 360 "C) provided tricyclic ketone 10, CollD25 t107' (c 2.67, CHC13) in 

57% yield.11 OlefinationI2 of 10 (CH212, Zn, TiC14) gave diene 11, [ulD25 t40° (c 4.0, CHC13), 

in 52% yield (81% based on unrecovered ketone). Regio- and stereoselective monoepoxidation of 

diene 11 (MCPBA, Na2HP04, CH2C12) produced the desired epoxide 12, [a]D25 +26" (5 3.53, 

CHC13), in 50% yield. Epoxide 12 was isomerized to ketone 13, [a]D25 +10.3“ (f 2.5, CHC13), 

in 43% yield using BF3oEt20 in CH2C12. Double bond migration (12, C6H6, heat) converted 13 

into a separable 2:l mixture of I3 and 14, [(r]D 25 t77' (c 1.26, CHC13). Finally, deoxygena- _ 

tion of 14 (K2CO3, NH2NH2, HOCH2CH2OH, heat) provided (+)-modhephene 1 ca]D25 t4.5" (5 0.13, 

CHC13) contaminated with approximately 15% of epimodhephene 15. 

The rotation of natural modhephene , calculated13 from the reported ORD data,14 is -4.2" (5 

1.5, CHC13). Thus, the absolute stereochemistry of the natural product should be formulated 

as 16.15 This formulation is in keeping with the postulated biosynthetic route to modhephene 

from (I& 92) caryophyllene.I4sI6sI7 

REAGENTS FOR SCHEME I: 

(a) 1,4-Di-O-methyl-2,3-di-o-trimethyl- 
silyl-Dzthreitol. TMS-OTf 

(b) Zn(Cu), CH212, Et20, heat 

(c) Aq. HCI, CH30H 

(d) TMS-I, CC14 

(e) TMSOCH2CH20TMS, TMS-OTf. CH2C12 

(t) Li@BCH2C~CTMs, TMED, HMPA, Et20 

(g) Aq. HCl, CH30H 

(h) nBuqN@F? THF, H20 

(i) 360 'C, decalin 

(j) CH2I2, Zn, TiC14, THF 

(k) MCPBA, Na2HPO4, CH2C12 

(1) BF3.Et20, CH2C12 

(m) 12, C6H6. heat 

(n) NH2NH2, K2CO3. HOCH2CH20H. heat 
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SCHEME I. Enantioselective Synthesis of (+)-Modhephene 1. 
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